Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 331: 121896, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388029

RESUMO

Nanocelluloses derived from natural cellulose sources are promising sustainable nanomaterials. Previous studies have reported that nanocelluloses are strongly adsorbed onto liquid-liquid interfaces with the concurrent use of ligands and allow for the structuring of liquids, that is, the kinetic trapping of nonequilibrium shapes of liquids. However, the structuring of liquids using nanocelluloses alone has yet to be demonstrated, despite its great potential in the development of sustainable liquid-based materials that are biocompatible and environmentally friendly. Herein, we demonstrated the structuring of liquids using rectangular sheet-shaped synthetic nanocelluloses with surface alkyl groups. Synthetic nanocelluloses with ethyl, butyl, and hexyl groups on their surfaces were readily prepared following our previous reports via the self-assembly of enzymatically synthesized cello-oligosaccharides having the corresponding alkyl groups. Among the alkylated synthetic nanocelluloses, the hexylated nanocellulose was adsorbed and jammed at water-n-undecane interfaces to form interfacial assemblies, which acted substantially as an integrated film for structuring liquids. These phenomena were attributed to the unique structural characteristics of the surface-hexylated synthetic nanocelluloses; their sheet shape offered a large area for adsorption onto interfaces, and their controlled surface hydrophilicity/hydrophobicity enhanced the affinity for both liquid phases. Our findings promote the development of all-liquid devices using nanocelluloses.

2.
ACS Appl Bio Mater ; 7(1): 246-255, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967519

RESUMO

Antibacterial materials composed of biodegradable and biocompatible constituents that are produced via eco-friendly synthetic strategies will become an attractive alternative to antibiotics to combat antibiotic-resistant bacteria. In this study, we demonstrated the antibacterial properties of nanosheet-shaped crystalline assemblies of enzymatically synthesized aminated cellulose oligomers (namely, surface-aminated synthetic nanocelluloses) and their synergy with a metal-chelating antibacterial agent, ethylenediaminetetraacetic acid (EDTA). Growth curves and colony counting assays revealed that the surface-aminated cellulose assemblies had an antibacterial effect against Gram-negative Escherichia coli (E. coli). The cationic assemblies appeared to destabilize the cell wall of E. coli through electrostatic interactions with anionic lipopolysaccharide (LPS) molecules on the outer membrane. The antibacterial properties were significantly enhanced by the concurrent use of EDTA, which potentially removed metal ions from LPS molecules, resulting in synergistic bactericidal effects. No antibacterial activity of the surface-aminated cellulose assemblies was observed against Gram-positive Staphylococcus aureus even in the presence of EDTA, further supporting the contribution of electrostatic interactions between the cationic assemblies and anionic LPS to the activity against Gram-negative bacteria. Analysis using quartz crystal microbalance with dissipation monitoring revealed the attractive interaction of the surface-aminated cellulose assembly with LPS Ra monolayers artificially produced on the device substrate.


Assuntos
Escherichia coli , Lipopolissacarídeos , Ácido Edético/farmacologia , Lipopolissacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Quelantes/farmacologia , Metais , Cátions , Celulose/farmacologia
3.
Pest Manag Sci ; 80(2): 627-636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743410

RESUMO

BACKGROUND: Recently, suspected cyhalofop-butyl-resistant populations of allohexaploid weed Echinochloa crus-galli var. crus-galli were discovered in rice fields in Aichi Prefecture, Japan. Analyzing the target-site ACCase genes of cyhalofop-butyl helps understand the resistance mechanism. However, in E. crus-galli, the presence of multiple ACCase genes and the lack of detailed gene investigations have complicated the analysis of target-site genes. Therefore, in this study, we characterized the herbicide response of E. crus-galli lines and thoroughly characterized the ACCase genes, including the evaluation of gene mutations in the ACCase genes of each line. RESULT: Four suspected resistant lines collected from Aichi Prefecture showed varying degrees of resistance to cyhalofop-butyl and other FOP-class ACCase inhibitors but were sensitive to herbicides with other modes of action. Through genomic analysis, six ACCase loci were identified in the E. crus-galli genome. We renamed each gene based on its syntenic relationship with other ACCase genes in the Poaceae species. RNA-sequencing analysis revealed that all ACCase genes, except the pseudogenized copy ACCase2A, were transcribed at a similar level in the shoots of E. crus-galli. Mutations known to confer resistance to FOP-class herbicides, that is W1999C, W2027C/S and I2041N, were found in all resistant lines in either ACCase1A, ACCase1B or ACCase2C. CONCLUSION: In this study, we found that the E. crus-galli lines were resistant exclusively to ACCase-inhibiting herbicides, with a target-site resistance mutation in the ACCase gene. Characterization of ACCase loci in E. crus-galli provides a basis for further research on ACCase herbicide resistance in Echinochloa spp. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Butanos , Echinochloa , Herbicidas , Nitrilas , Echinochloa/genética , Japão , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Mutação
4.
J Mater Chem B ; 12(3): 650-657, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38088066

RESUMO

The conjugation of poly(ethylene glycol) (PEG) to therapeutic proteins or nanoparticles is a widely used pharmaceutical strategy to improve their therapeutic efficacy. However, conjugation can make PEG immunogenic and induce the production of anti-PEG antibodies, which decreases both the therapeutic efficacy after repeated dosing and clinical safety. To address these concerns, it is essential to analyze the binding characteristics of anti-PEG antibodies to PEG. However, distinguishing anti-PEG antibodies is still a difficult task. Herein, we demonstrate the use of antibiofouling cello-oligosaccharide assemblies tethering one-terminal methoxy oligo(ethylene glycol) (OEG) ligands for distinguishing anti-PEG antibodies in a simple manner. The OEG ligand-tethering two-dimensional crystalline cello-oligosaccharide assemblies were stably dispersed in a buffer solution and had antibiofouling properties against nonspecific protein adsorption. These characteristics allowed enzyme-linked immunosorbent assays (ELISAs) to be simply performed by cycles of centrifugation/redispersion of aqueous dispersions of the assemblies. The simple assays revealed that the specific OEG ligand-tethering assemblies could distinguish anti-PEG antibodies to detect a specific antibody that preferentially binds to the methoxy terminus of the PEG chain with 3 repeating ethylene glycol units. Furthermore, quantitative detection of the antibodies was successfully performed with high sensitivity even in the presence of serum. The detectable and quantifiable range of antibody concentrations covered those required clinically. Our findings open a new avenue for analyzing the binding characteristics of anti-PEG antibodies in biological samples.


Assuntos
Anticorpos , Proteínas , Ligantes , Proteínas/química , Ensaio de Imunoadsorção Enzimática , Polietilenoglicóis/química
5.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943179

RESUMO

Echinochloa phyllopogon is an allotetraploid pernicious weed species found in rice fields worldwide that often exhibit resistance to multiple herbicides. An accurate genome sequence is essential to comprehensively understand the genetic basis underlying the traits of this species. Here, the telomere-to-telomere genome sequence of E. phyllopogon was presented. Eighteen chromosome sequences spanning 1.0 Gb were constructed using the PacBio highly fidelity long technology. Of the 18 chromosomes, 12 sequences were entirely assembled into telomere-to-telomere and gap-free contigs, whereas the remaining six sequences were constructed at the chromosomal level with only eight gaps. The sequences were assigned to the A and B genome with total lengths of 453 and 520 Mb, respectively. Repetitive sequences occupied 42.93% of the A genome and 48.47% of the B genome, although 32,337, and 30,889 high-confidence genes were predicted in the A and B genomes, respectively. This suggested that genome extensions and gene disruptions caused by repeated sequence accumulation often occur in the B genome before polyploidization to establish a tetraploid genome. The highly accurate and comprehensive genome sequence could be a milestone in understanding the molecular mechanisms of the pernicious traits and in developing effective weed control strategies to avoid yield loss in rice production.


Assuntos
Echinochloa , Oryza , Telômero/genética , Oryza/genética , Fenótipo , Tetraploidia
6.
Carbohydr Polym ; 300: 120257, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372485

RESUMO

Nanocelluloses, such as cellulose nanofibers and nanocrystals, are sustainable nanomaterials that are generally extracted from natural raw materials in a top-down manner. These nanomaterials and their assemblies are facilitating new applications of biopolymers. However, creating nanostructures from conventional cellulosic materials including paper and cloth remains challenging. Herein, we report an approach for bottom-up nanostructuring of conventional microfibrous cellulose materials via a molecular self-assembly strategy. As a precursor cellulose material, paper was allowed to swell with aqueous phosphoric acid for the partial dissolution and hydrolysis of cellulose while maintaining its microfibrous structure. The generated cello-oligosaccharides in a dissolved state started to self-assemble upon adding water as a coagulant, resulting in nanospike-like assemblies on the microfiber surfaces. The resultant nanospiked papers were found to serve as a precursor for synthesizing silver nanoparticle-cellulose composites with bactericidal activities. Our findings promote the development of cellulose-based functional materials with nanostructures designed via molecular self-assembly.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Celulose/química , Hidrólise , Prata/química , Nanoestruturas/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...